人工智能芯片研究报告

内容简介

2010年以来,由于大数据产业的发展,数据量呈现爆炸性增长态势,而传统的计算架构又无法支撑深度学习的大规模并行计算需求,于是研究界对 AI 芯片进行了新一轮的技术研发与应用研究。AI 芯片是人工智能时代的技术核心之一,决定了平台的基础架构和发展生态。本报告在此背景下,对人工智能芯片的发展现状进行了简单梳理,包括以下内容:

  • 人工智能芯片概念
  • AI 芯片的技术特点及局限性
  • AI 芯片厂商介绍
  • AI 芯片领域专家介绍
  • AI 芯片的发展趋势介绍

作者简介

AMiner 平台,由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。

系统2006年上线,吸引了全球220个国家/地区1000多万独立 IP 访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。

系统相关核心技术申请专利50余项,发表论文500余篇,其中 SCI 论文110篇,编著英文论著两部,Google 引用超过11000次,SCI 他引超过2200次。

项目成果及核心技术应用于工程院、科技部、自然基金委、华为、腾讯、阿里巴巴、百度等国内外20多家企事业单位,为各单位的系统建设及产品升级提供了重要数据及技术支撑。

AMiner 唯一官方微信公众号:学术头条(ID:SciTouTiao)。

AMiner 官方网站 https://www.aminer.cn/

版权声明

AMiner 研究报告提供给订阅用户使用,仅限于用户内部使用。未获得 AMiner 团队授权,任何人和单位不得以任何方式在任何媒体上(包括互联网)公开发布、复制,且不得以任何方式将研究报告的内容提供给其他单位或个人使用。如引用、刊发,需注明出处为“AMiner.org”,且不得对本报告进行有悖原意的删节与修改。

AMiner 研究报告是基于 AMiner 团队及其研究员认可的研究资料,所有资料源自 AMiner 后台程序对大数据的自动分析得到,本研究报告仅作为参考,AMiner 团队不保证所分析得到的准确性和完整性,也不承担任何投资者因使用本产品与服务而产生的任何责任。

本书内容

摘要
第一章 概述篇
第二章 技术篇
第三章 产业篇
第四章 人物篇
第五章 应用领域篇
第六章 趋势篇
参考文献

阅读全文: http://gitbook.cn/gitchat/geekbook/5c1324471e59245d4d29d4d2

相关推荐
在第三届未来芯片论坛上,清华大学联合北京未来芯片技术高精尖创新中心发布《人工智能芯片技术白皮书(2018)》(2018 White Paper on AI Chip Technologies)。尽管全球人工智能产业还处于初期发展阶段,但随着政府和产业界的积极推动, 人工智能技术在大规模产业化应用方面突飞猛进,在算法和芯片人工智能基础技术层面积累了强大的技术创新,这些成果未必能即时商业化,但对未来科技的影响深远。 为了更好地厘清当前AI 芯片领域的发展态势,进一步明确 AI 芯片在新技术形势下的路线框架、关键环节及应用前景,北京未来芯片技术高精尖创新中心根据学术界和工业界的最新实践,邀请国内外AI 芯片领域的顶尖研究力量,共同开展《人工智能芯片技术白皮书》的编制工作。 整个《白皮书》总共分为10个章节,第一章节首先对芯片发展的背景做了一个交代,然后从多个维度介绍了AI 芯片的关键特征,在第三章介绍了AI芯片的发展现状;第四章从冯·诺伊曼瓶颈和CMOS工艺以及器件瓶颈分析了AI芯片的技术挑战。从第六章到第八章,《白皮书》完成了对芯片各种技术路线的梳理。在最后一章对未来技术发展趋势和风险进行了预判。《白皮书》由斯坦福大学、清华大学、香港科技大学、加州大学、圣母大学的顶尖研究者和产业界资深专家,包括10余位IEEE Fellow共同编写完成。 本文主要包括九方面内容 :第 1 章为发展 AI 芯片产业的战略意义以及白皮书基本内容概述。第 2 章综述了 AI 芯片的技术背景,从多个维度提出了满足不同场景条件下 AI 芯片和硬件平台的关键特征。第 3 章介绍近几年的 AI 芯片在云侧、边缘和终端设备等不同场景中的发展状况,总结了云侧和边缘设备需要解决的不同问题,以及云侧和边缘设备如何协作支撑 AI 应用。第 4 章在 CMOS 工艺特征尺寸逐渐逼近极限的大背景下,结合 AI 芯片面临的架构挑战,分析 AI 芯片的技术趋势。第 5 章讨论了建立在当前 CMOS 技术集成上的云端和终端 AI 芯片架构创新。第 6 章主要介绍对 AI 芯片至关重要的存储技术,包括传统存储技术的改进和基于新兴非易失存储(NVM)的存储器解决方案。第 7 章重点讨论在工艺、器件、电路和存储器方面的前沿研究工作,和以此为基础的存内计算、生物神经网络等新技术趋势。第 8 章介绍神经形态计算技术和芯片的算法、模型以及关键技术特征,并分析该技术面临的机遇和挑战。第 9 章主要讨论 AI 芯片的基准测试和技术路线图的相关问题。第 10 章展望 AI 芯片的未来。 在人工智能热潮面前,本文一方面希望与全球学术和工业界分享 AI 芯片领域的创新成果;另一方面希望通过对 AI 芯片的技术认知和需求的深入洞察,帮助相关人士更加清晰地了解AI 芯片所处的产业地位、发展机遇与需求现状,通过对 AI 芯片产业现状及各种技术路线的梳理,增进对未来风险的预判。目前人工智能技术整体发展仍处于初级阶段,未来还有很多技术和商业层面的挑战。我们要去除在产业发展过程中一窝蜂“逐热而上”的虚火,在充满信心、怀抱希望的同时,保持冷静和客观,推动 AI 芯片产业可持续发展。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页