从凸优化理解高维特征下的深度学习

本 Chat 意在从高维空间特征角度引入深度学习,进入到深度学习的理论内部,用通俗易懂的方式将一个貌似很高深晦涩的理论浅显化。你可以是一个文科外行,亦或是一个管理工作的高管,或是想踏入 AI 领域,又或是想了解机器学习\深度学习理论同行,我们换个角度一探究竟吧。(以此前自己的一个汇报 PPT 为材料,力求多的图像和解释性文字详述)

主要内容:

  1. 什么是凸优化?
  2. 什么是非线性?
  3. 什么是高维空间?
  4. 高维特征空间和深度学习有什么关系?
  5. 卷积层数越多,特征提取能力真的越强吗?为啥?

文章主要以此为线索,力求浅显易懂,不懂不要钱(哈哈),我们开始吧···

阅读全文: http://gitbook.cn/gitchat/activity/5a70632c097b1b5861076130

您还可以下载 CSDN 旗下精品原创内容社区 GitChat App ,阅读更多 GitChat 专享技术内容哦。

FtooAtPSkEJwnW-9xkCLqSTRpBKX

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页